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Introduction to a Brownian Quasiparticle Model 
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A description intermediate between the usual stochastic description of a 
Brownian particle and the deterministic description of a classical particle is 
proposed. It is based on a model which utilizes the notions of a current 
velocity and of an osmotic velocity, and which generates a random process 
which allows us to associate with any given initial and final conditions a 
unique differentiable trajectory. This intermediate description of the 
Brownian motion, in terms of quasiparticles with quasideterministic 
behavior, gives back the same mean and the same variance as does the 
usual stochastic description. 
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1. I N T R O D U C T I O N  

Before exposing the problem we are going to handle, let us summarize some 

results of  stochastic physics. Let X(t) be a process in R" which satisfies a 

generalized Langevin  equat ion  of  the form 

dX(t) = D(X(t), t )dt  + dW(t) 

where X(t) is a vector of R ", D a regular field of  vectors, dt a macroscopically 
infinitesimal increment  of  time, and  W(t) a Wiener  process, i.e., a process 

whose increments  are Gaussian,  with zero mean,  and  whose variance matr ix  

I t - s I[~b], i, j -- 1 ..... n, is propor t ional  to the t ime increment  It - s I. We 
call the matr ix  of diffusion the matr ix  [M] = �89 Given  D, the probabi l i ty  

density in ~", f (X ,  t), satisfies the F o k k e r - P l a n c k  equat ion  

~ f ( X ,  t) = - d i v x ( f ( X ,  t)D(X, t)) + divx([M] gradxf(X, t)) (1) 
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The conditional probability density P(XtlXoto) that the variable X(t) takes 
the value X at time t, knowing that it has the value Xo at time to, is the 
fundamental solution G(X, t, Xo, to) of  this equation, i.e., the solution that 
tends to 3(X - Xo) when t tends to zero (t > to). 

In this paper we limit ourselves to a D field of  vectors independent of  
time and linear in X. In this case, we can explicitly integrate the differential 
deterministic system 

d X f  = D ( X t  D) dt 

and we call XtD(t -- to, XO) the solution that takes the value Xo at time to, 
The conditional probability density is then a function of t - to, and we write 
it a s f~  t - to, Xo): 

P(Xt]Xoto) = i f (X ,  t - to, Xo), t > to 

Finally, the mean of the process is equal to Xt D, 

= f Xfo(X, t - to, Xo) dX  = XtD(t - -  to, Xo) E(X(t)} 

and the elements of its variance matrix are functions of  t - to: 

E { ( ~ ( t )  - X g 3 ( X j ( t )  - Xg,3} = C ~ j ( t -  to) 

We are now in a position to expose the problem that is the object of  this 
paper. Let us consider a Brownian particle submitted to a double initial and 
final condition: to leave Xo at time to and to arrive at X'  at time t ' .  To this 
double condition there correspond an infinity of  possible stochastic trajectories 
(nondifferentiable). Our aim is to build a model of  quasiparticles which 
involves a sole differentiable trajectory, going f rom (Xoto) to (X't '),  and 
representing a certain mean behavior of  the Brownian particle between those 
two points. This mean behavior must be such as to give back, by integrating 
over the final position X' ,  the m e a n  X ' t D ( t  - -  to, Xo) and the variance matrix 
[C~j(t - to)] of  the process X(t) at time t, given the initial (Xoto) condition. 
Moreover,  it must be the same thing for any initial I(Xo) density. However, 
we do not ourselves impose any condition on the covariance at two different 
instants. 

2. D E S C R I P T I O N  OF T H E  M O D E L  

The first idea which comes in mind is to take as a trajectory the partial 
mean of the process X(t), which is calculated with the conditional probability 
density P(Xt  ]Xoto, X't ' )  to be at (Xt), knowing that we are at Xo at time to 
and at X '  at time t '  ( t '  > t > to), 

Y(t, X',  t', Xo, to) = [ XP( Xt I Xoto , X ' t  /) dX 
J 
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We easily check that the mean of Y over the final condition X', which is 
calculated with the probability density P ( X ' t '  I Xoto), is independent of t '  and 
is equal to the mean X f  of the process X( t ) .  But we can check in particular 
cases (we handle in the appendix the simplest case, n = 1, D =- 0) that the 
variance matrix of Y is not equal to the variance matrix of X( t ) .  Thus, the 
trajectory Y does not satisfy the criteria we have chosen. We now present a 
model which satisfies these criteria. 

Our model is founded on the notions of the current velocity and of the 
osmotic velocity associated with the process X ( t )  for the initial (Xoto) con- 
dition. (1~ The current velocity V(X,  t - to, Xo) and the osmotic velocity 
~(X, t - to, Xo) are respectively the half sum and the half difference of the 
mean velocity departing from X ( t )  (mean forward velocity) and of the mean 
velocity arriving at X ( t )  (mean backward velocity). Therefore V and ~2 are 
linked by the relation 

V(X ,  t - to, X0) = D ( X )  - ~(X, t - to, Xo) 

Moreover, f2 is a function of the probability density 

f2(X, t - to, X0) = [M] gradx logf~(X, t - to, Xo) 

and V satisfies the continuity equation in the Eulerian description. 
Our idea introduces the preceding notions into a Lagrangian description. 

We consequently postulate a continuous dynamic evolution, which is 
described by the variable Xt,  

d 
X~ = V(X t ,  t - to, Xo) = a ( x t )  - [M] gradx~ logf~(X~, t - to, Xo) (2) 

and which satisfies the continuity equation along the stream: 

a ~X. , - ~ f  ( ~, t - to Xo) = - d i v x t ( f o ( X ~ ,  t - to Xo )V(X t ,  t - to, Xo)) (3) 

We verify that the compatibility equation between (2) and (3) is just the 
Fokker-Planck equation (1) written for X = Xt. 

In various particular cases, we have developed this model in the following 
way: 

(a) We solve Eq. (1); for a field D independent of  time and linear in X, 
the fundamental solution f~ is a Gaussian function whose argument is a 
quadratic form of (X - Xf) ,  where X f ( t  - to, Xo) is the solution of the 
deterministic system dXt D = D(  Xt ~  dr. 

(b) We put this solution f6  in (2), which thus becomes an explicit 
differential system, which we integrate, thus obtaining the general solution 

Xt(t  - to, A, Xo) = X~l~(t - to, Xo) + [r - to)]A 

where the vector A represents the n arbitrary constants of integration, and 
where [~(t - to)] is an n • n matrix which vanishes for t = to. 
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(c) I t  appears that the Jacobian Jr, = N(Xt,)/~(A) = det[4(t '  - to)] is 
different from zero for t '  > to; given a final condition Xt, = X '  at time t ' ,  
we thus determine the vector A. This gives us a well-defined trajectory Xt going 
from (Xoto) to (X ' t ' ) .  

(d) We associate with this trajectory (and thus with the corresponding 
vector A) the probability d e n s i t y f ~  ', t' - to, Xo) for arrival at (X ' t ' )  after 
leaving (Xoto). With this probability density, and by integration over X',  it is 
then possible to calculate the mean and the variance matrix of  Xt. These 
quantities, which are independent of  t ' ,  are the same as those of the process 

X(t) .  In fact, we use a law of distribution for A, such that 

p(A, t '  - to, Xo) dA = f o ( X ' ,  t '  - to, Xo) dX '  

and it appears that this law p is a function only of A, and that it has a Gaussian 
form. I t  is thus possible to introduce a random process Z( t  - to, A, Xo) in the 
following form: 

f Z ( t  - to, A, Xo) = XtD(t - to, Xo) + [q~(t - to)]A 
process Z:  ~.Gaussian distribution law p(A) 

and we check that the mean and the variance matrix, respectively, of  this 
process Z are equal to those of  the process X(t) .  

(e) When Xo becomes a random variable, denoted E, with the (normal- 
ized) initial density I(E), we easily verify that the mean and the variance 
matrix of  the process Z are still the same as those of  the process X(t) .  Indeed, 
in this case, the mean of X( t )  is 

= f f  xi (x,t - to, z ) i ( z )  d z  a s  E(X( t )}  

The transformation (E, X) -+ (E, A), such that X = Z( t  - to, A, E), allows 
us to write the preceding integral as the mean of the process Z, calculated with 
the joint density F(E, A) = I(E)p(A) for the independent variables E and A. 
The same is true for the variance matrix. 

To picture the method which has just been exposed, we are going to 
calculate explicitly a process Z. For  simplicity, we limit ourselves to an 
example in ~. 

3. E X A M P L E  IN [~ 

I f  X(t )  = x( t )  ~ R is the variable of  position, Eq. (1) is reduced to an 
equation of the Smoluchowski type. For  D = ax + b and [M] = F, it is 
written 

~ f ( x ,  t) = - {(ax + b)f(x,  t)} + F -~--~2f(x, t) 



In t roduct ion to a Brownian  Quasipart ic le  Model  443 

and its fundamental solution is 

fO(x ,  t - to, xo) = {2~rA(t - to)}-112 exp 

with 

(e2~(t-to) - 1), A ( t -  to) = a -  

x - x ~ )  ~ 

2 A ( t -  to) 

b (e~(t_~o) _ 1) "~tD = x ~ 1 7 6  + a 

Hence we deduce that xt D and A ( t  - to) are, respectively, the mean and the 
variance of the process x ( t ) .  Let us put this solution into the dynamic equation 
(2); we obtain the differential equation 

d x  t 
d---f" = aXt + b + 

whose general solution is 

x ,  = x t  ~ + , ~ [ A ( t  - to)]1/2; 

A(t ~- to) (x~ - x / )  

a constant of integration 

We notice that the A function vanishes for t = to, and thus xt  and xt  ~ corre- 
spond to the same initial condition (Xoto). 

The Jacobian Jr, = Oxt,/e)~ = [A ( t '  - to)] 1/2 is different from zero for 
t '  > to. Given a final condition xt, = x '  at time t ' ,  we then determine the 
value of the constant A associated with the point ( x ' t ' ) :  

= ( x '  - x , , ~ ) / [ A ( t  ' - to)P ~ 

We thus obtain a sole trajectory going from (Xoto) to (x ' t ' ) :  

X t __ X t  ,D 
x t  = x t  D + [A( t '  -- t--~ ~/2 [A( t  - to)]1/2; t '  > t > to 

Let us associate with this trajectory the probability density for arrival at x '  

at time t ' .  I t  is then possible to calculate the mean and the variance of xt by 
integration over x ' ,  but it is better to deduce for 2~ a probability density p 
defined by p(~, t '  - to, Xo) d~ = f ~ ( x ' ,  t '  - to, xo)  dx ' .  Because of the expres- 
sions which have been found for ~ and Jr,, it appears that p is a Gaussian 
function only of  ;~: 

p()t) = (2~r)- 1/2e-a212 

The set of  the trajectories xt  starting from (xoto) and corresponding to all 
the possible ( x ' t ' )  points can then be considered as a process z ( t  - to, ,~, x0): 

z ( t  - to, )t, Xo) = xtV(t  - to, xo)  + s  - to)]1/2; p(~) = (27r)-l/2e-a2/2 



444 P. Combis, J. Fronteau, and A. Tellez-Arenas 

We immediately check that the mean and the variance of this process z are 
respectively equal to the mean and the variance of the process x(t): 

f z(t - h, Xo)p(h) dh = xtD(t -- to, Xo) to, 

f {z(t -- A, Xo) -- xtD(t -- to, X0)}2p(A) dA = A(t - to) to, 

Let us consider now the case of any (normalized) initial density I(~) # 
3(~: - xo). The mean of the process x(t) is then 

E{x(t)} = f f x{2rrA(t - to)} -112 

( [ X - - x t D ( t - - t ~  
x exp - 2-~(t -- to) I(~) d~ dx 

The transformation (~:, x) -+ (~:, h), such that x = z(t - to, A, ~), leads to 

f f {xtD(t-- t~ ~) + h [ A ( t -  to)] 112} E{x(t)} = 

x (2rr)-~/2e-A2/2I(~) d~: dA 

In this formula, we recognize the mean of the process z calculated with the 
joint probability density for the two independent variables A and ~. The same 
is true for the variance. Moreover, due to the linearity of z with respect to h 
and ~:, the calculation is achieved very easily: 

E{x(t)} = xtD(t - to, ~); ~ = f ~I(~) d~ 

E{[x(t) - x,D(t -- to, ~)]2} = eZ~(t-to)(~ _ ~)2 + A(t - to) 

It should be noted that the particular form of the process z (in which h 
and ~: are separate and p is Gaussian) does not proceed from the simplicity 
of the given example. Indeed we still obtain this form (A and E separate, 
p Gaussian) in more sophisticated linear cases [for example, X(t)  in phase 
space for any quadratic potential]. The results obtained above have therefore 
a rather broad meaning. 

4. C O N C L U D I N G  R E M A R K S  

In this paper, we have considered a Brownian particle described by a 
process X(t)  in a field D linear and independent of time. With the process 
X(t),  starting from (Xoto), we associate a description intermediate between 
the usual stochastic description (nondifferentiable trajectories) 

dX(t) = h(X(t))  dt + dW(t) 



Introduction to a Brownian Quasiparticle Model 445 

and the classical deterministic description 

dXt D = D(Xt  D) dt 

whose solution, for the initial condition (Xoto), is the mean of the previous 
process. 

In this intermediate description, to any final point (X ' t ' ) ,  t '  > to, there 
corresponds a unique differentiable trajectory Xt going from (Xoto) to (X ' t ' )  
and such that 

dXt/dt = D(X,)  - [M] gradx~ logfO(X~, t - to, Xo) 

To this trajectory we assign the probability density f 6 ( X ' ,  t '  - to, Xo) 
for arrival at (X ' t ' ) .  The set of the differentiable trajectories thus defined 
constitutes a process ( Z ( t -  to, A, ti0); p(A)) whose mean and variance 
matrix are the same as those of the process X( t )  when (Xoto) is given. In the 
general case, when X0 is a random variable denoted E, with density I(E), the 
mean and the variance matrix of  the process Z( t  - to, A, E), calculated with 
the joint density I(E)p(A), are still the same as those of the process X(t) .  

Thus, to the real Brownian particles, we associate quasiparticles whose 
behavior presents both a certain deterministic aspect (in such a way that any 
given initial and final conditions determine a sole trajectory) and a prob- 
abilistic aspect (in such a way that a probability is attached to each of  the 
trajectories). However, the process Z which describes the behavior of these 
quasiparticles is not equivalent to the process X(t): it does not give back the 
covariance of X(t )  at two different instants. Yet it presents the advantage of 
simplicity. In particular, it allows us to achieve easily the calculation of the 
mean and of the variance matrix of the process X( t )  for any given initial 
density. 

Finally, we note that the notion of Brownian quasiparticles introduced 
here is of some interest in the context of the recent stochastic interpretation of 
quantum mechanics (see, e.g., Refs. 2-6). 

A P P E N D I X  

In the case D = 0, the process X( t )  is reduced to the Wiener process W(t)  
and for n = 1 we denote it, as in the text, x(t).  The associated Fokker-Planck 
equation is the heat equation, whose fundamental solution is 

( x  - Xo) ~ 
P(xtlXoto) = f~(x,  t - to, Xo) = {4~r(t - to)t,} -1/2 exp 4(t - to)t* 

The mean and the variance of  the process x( t )  are, respectively, Xo and 
2(t - to)t*. The process Y, which is introduced in the text, is written here 

f P(xtlXoto)P(x' t ' Ixt ,  Xoto) t' 
y(t, x', t', Xo, to) = x P(x't']Xoto) dx; > t > to 
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where  P(x '  t ' lx t ,  Xoto) = P ( x '  t ' l x t  ) = fO(x ' ,  t '  - t, x ) b e c a u s e  of  the M a rkov -  
ian and  homogeneous  na tu re  o f  the process  x( t ) .  Thus  

y(t ,  x ' ,  t ' ,  Xo, to) = (t - to)X' + ( t '  - t)xo 
t '  - to 

The mean  o f  the process  y being equal  to  Xo, its var iance  is 

,o 
(t_-- to)__ 2 

t '  - to ' t '  - to 

As  s ta ted in the text, the  var iance  o f  the process  y at  t ime t is different f rom 

the var iance  2(t - to)/~ o f  the  process  x ( t )  at  the  same time. 
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